From Legacy to Emerging Pollutants: Mass Spectrometry Solutions to Analyze Dioxins & PFAS in Water

Agilent Lunch Seminar @ NEMC 2021

Tarun Anumol, Ph.D. Director, Global Environment & Food Markets Agilent Technologies Inc.

PFAS analysis needs many aspects to Meet Various Laboratory Needs Individual Products and Services for Regulatory and Individual Method Development

LC-MS/MS instrumentation

er Conpounde Snable Merri		Stor A Facada Search fiber						Search Cargosords					
Drughe Filters					Search Test								
3 Brucke filters Optimized Despands					EPA301 EPA5011 A578			Select Dolumes Project Name					
dante coloria							- D Form	22					
Data From [12	13.2828 U- 31 86.04.271						N HI						
Goatiere	Poet	form .	10				C One						
Total In	en hat		- 8				1 08						
Terral	- N			Î	Hasherbe volta	art-day		CB CORTO					
Select Transform					pines and type face			Reistandun	da -				
O Sector 1 O Persylventies O Secondary transfe		Salact To	esters		Setto 2 ori Set Provins and	ind transform and Tapper	-	C Reports	later -				
Compound Name	1071C Name	CAS	Formula	Chardipider	Pulatity	Rea	Precasar	Protect	Frag. #				
I WEL	Hepheluoralizaterial acid	375-22-4	CHIF702	323N	liquite	213.88	213	102					
PEFeA	Noral-longentarios and	2706-90-3	CSHF802	68428	Reptive .	283.96	251	218					
C PERMA	Undecaffurntheservic acid	307-24-4	CI9/#1102	62064	Neptice	313.98	212	20					
PFHA	District further and and	307.34-4	CIN-F1102	62864	Nepti-e	212.98	30	19					
П тыра	Tratecellusrateplaneic acid	375-89-3	CIN#1302	81128	Nejstve	362.55	363	219					
- PFMA	Tritecel analygianic acid	375-85-8	C7HF1302	61126	Negative	262.99	301	108					
D MOX	Pertadecalfuoroscheroic add	225-67-1	CBH#1503	2130	Reptive	413.97	413	312					
C PFOA	Pertaleculuroscores and	186-67-1	C8HF1502	9180	Negative	412.97	128	10					
L] 19704	Pentadecalfuprocidancic acid	125-67-1	(CBH#1502	12130	Negative	413.57	412	215	_				
124-30	registeration report and	3/9-99-1	0.0044-0.005	5118	Negative -	451.91	29.1	219					
LI PTINA	Replace shummen and add	1581	C8471702	ETTSE	Teget-re	40.57	45	20	-				
	Report Support and	200900	Cartalitation	100.01	Negative Departure	453.97	457						
C PENDA	line and on effective and	200.01.0	C11463103	abox.	Name	101.00	543	202					
CT PENE	terrend emotioner and	250,54.7	C110/22002	1994	Service .	42140	441	214	-				
PEDICA	Transal and deceniar and	307-55-1	CONFUSOR	8287	Sept.e	612.96	413	50	7				
PT PT Duch	Treased anotodecenic acid	207-65-1	C12HF2302	42967	Seator	8038	812	212	2				
PED-CA	Transformationers and	307-65-1	C12HF2300	1287	Negative	80.9	\$13	262	T				
PFDHDA	Tresself are deducarsic acid	307-89-1	C12HF2302	80967	Neptice	613.96	613	169	2				
PF1GA	Personalumbilement and	73529-94-8	CT34F2502	2245857	Negative -	6235	-642	418	3				
PF164	Partacealfunctichearoic and	72829-54-8	C13HF2900	2288907	Neptive	662.96	103	315	τ.,				
									3				

PFAS MRM Database

PFC-Free HPLC Conversion Kit

PFC-Free Columns and Supplies

Accelerate Productivity, Improve Outcomes

Agilent CrossLab method and application services

Application Services & Support

PFAS Easy Ordering Guide (5994-2357)

for EPA 537, 533, 8327, ASTM D7979, ISO 21675:2019 and MRM acquisition method

Easy Selection and Ordering Information

This guide provides recommendations for Agilent products by regulatory method, so you can find what you're looking for quickly. To add items to your 'My Favorites'* list at the Agilent online store, simply click the MyList links in each header below. Then, enter the quantities for the products you need. Your list will remain under "My Favorites' for your use with future orders.

EPA 537 or similar: Determination of PFAS in drinking water by SPE and LC/MS/MS (EPA 537.1 or similar) View MyList

	Description	Part Number
Sample preparation	Bond Elut LMS cartridge, 500 mg, 6 mL, 30/pk	12255021
	Collection rack and funnel set for 12 or 15 mL conical tubes, for Vac Elut SPS 24 manifold	12234027
	Vac Elut SPS 24 manifold with collection rack for 10 x 75 mm test tubes	12234003
Guard column	ZORBAX RRHD Eclipse Plus C18 2.1 x 5 mm, 1.8 µm guard	821725-901
Separation column	ZORBAX RRHD Eclipse Plus C18, 2.1 x 100 mm, 1.8 µm	959758-902
PFC-free HPLC conversion kit w/delay column	Agilent InfinityLab PFC-free HPLC conversion kit**	5004-0006
Delay column	InfinityLab PFC Delay Column, 4.6 x 30 mm (replacement)	5062-8100
Other LC supplies	InfinityLab Quick Connect assembly, 0.12 x 105 mm, for column inlet connection on UHPLC	5067-5957
	InfinityLab Quick Connect assembly, 0.17 x 105 mm, for column inlet connection on UHPLC	5067-6166
	InfinityLab Quick Turn fitting, for column outlet	5067-5966
	Quick Turn capillary 0.12 x 280 mm, for connecting column to detector	5500-1191
	Kit of Stay Safe waste caps GL45 with 4 ports and waste can (6 L)	5043-1221
	Charcoal filter with time strip for waste container	5043-1193
	InfinityLab solvent filtration assembly: includes glass funnel (250 mL), membrane holder glass base, glass flask (1 L), and aluminum clamp	5191-6776
	Regenerated cellulose filter membrane (47 mm, 0.20 µm, 100/pk)	5191-4340
	Stainless steel solvent inlet filter, 12-14 µm pore size	01018-60025
Sample containment	Clear snap caps with polyethylene membrane septa (100/pk)	5182-0542
	Polypropylene vials (no caps) 100/pk	5182-0567

Promotion Code: 1913 Buy 10 or more items from this ordering guide to receive 25% discount

•• Aailent

*If this is your first time using the Agilent Online Store, you will be asked to enter your email address for account verification. If you don't have a registered Agilent account, you will need to register for one. The "My List" feature is valid only in regions that are e-commerce enabled. All items can also be ordered through your regular sales and distributor channels.

Not available in all countries. Please contact your local sales representative for availability.

Sampling Handling & Storage Advances 'PFAS' specific vials and caps

- PTFE lining in Caps can have PFAS contamination
- This leads to use of PP style snap top vials that have very poor sealability on piercing or longer-term storage with organic solvent
- This can result in use of 2 or more caps per sample
- Glass vials are thought to adsorb certain PFAS, hence PP vials are preferred

Description	Part number
2 mL screw style clear polypropylene vial (100pk)	5191-8150
9 mm screw style clear polypropylene cap with thin membrane polypropylene / silicone septa (100pk)	5191-8151

of PP and

silicone that

once pierced

No PTFE and free of 26 measured PFAS

1.7 mL fill volume and standard screw top

PFC Free Kit Eliminate Background Contamination

Potential Contamination Sources

- Solvents ٠
- Filtration apparatus ٠

(P/n: 5004-0006)

Teflon lined tubing *10² •

ſ			
	D	F	
	Γ		
		2 E	

LC Configuration

Standard LC Setup

PFHpA Background (fg)

>3,000

48

PFNA Background (fg)

>500

48

Sample Preparation

Sample preparation refers to the ways in which samples being treated prior to their analysis. Target analytes are the needle in the haystack of matrix, sample prep helps find the needle in the haystack.

Analytical choices for PFAS Quantification LC-MS/MS still seen as gold standard for quantification

Comprehensive Database & Method – Over 100 PFAS Compounds

PFAS eMethod Workflow overview

Method precision

🕂 🔆 Agilent

Agilent PFAS Solutions

End-to-end Verified Workflow: Turn-key Solution Ready for Immediate Use

PFAS Drinking & Surface Water eMethod

An end-to end, verified solution for the analysis of >100 native & isotopically labeled PFAS in **drinking water** and **surface water** without extensive method development or technical investigation

eMethod Includes:

- Full analysis protocol, from sample prep through reporting
- Optimized MassHunter Acquisition and Quant methods
- Best practices
- Sample preparation training video
- Example calibration data
- Comprehensive ordering information with part number details

Compatible with1290 + 6470 LC/TQ

1. Double click eMethod icon

Note – Agilent internal version requires selection of LC or GC

🕒 Agilent eMethod for MassHunter							
Select MassHunter Version							
	Cancel	Ok					

eMethod	Navigate to and select the eMethod you wish to import (eMethods have an extension of .emeth). The listing below will show the files that will be unpacked from the eMethod file.
Introduction eMethod Selection Instructions Save eMethod Finish	Select eMethod Image: System series and the system version in the system version version in the system version version version in the system version versin version version versin version version version version versin v

2. Review eMethod detail, click Next

LATEST PFAS TESTING INFORMATION

A one-stop for all PFAS info on regulatory and emerging methods

🕂 Agilent

Agilent PFAS Talks at NEMC Watch all talks ON-DEMAND at NEMC

SAMPLE PREPARATION

The Importance of Sorbent Mass to Sample Volume for the Extraction of PFAS from Drinking Water Using Weak Anion Exchange SPE – Matthew Giardina, Agilent Technologies Inc.

TARGETED QUANTIFICATION

Targeted Quantitation of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Water Matrices – Tarun Anumol, Agilent Technologies Inc.

NON-TARGET; HRMS QUANTIFICATION

Accurate Mass QToF - A New Direction in Quantitative PFAS Analysis – Kathy Hunt, Vogon Laboratories

An Alternate Testing Protocol for EPA 1613B using Agilent Triple Quadrupole GC/MS

Dale R. Walker GC/MS/MS Application Scientist

Tarun Anumol, Ph.D. Director, Global Environment & Food Markets

Anastasia Andrianova GC/MS/MS Application Scientist

Application Note

An Alternate Testing Protocol for EPA 1613B using Agilent Triple Quadrupole GC/MS

Determination of 2,3,7,8-substituted tetra- through octa-chlorinated dibenzo-*p*-dioxins and dibenzofurans

Authors

Coreen Hamilton and Xinhui Xie, SGS AXYS Analytical Services Ltd. Tarun Anumol, Anastasia Andrianova, and Dale Walker,

Agilent Technologies, Inc.

Abstract

This study provides data used to create an alternate testing protocol for the U.S. Environmental Protection Agency (EPA) to use for Agilent 7010B Triple Quadrupole GC/MS analysis of tetra- through octa-dioxins and furans that is equivalent to EPA Method 1613B. EPA Method 1613B is used for the determination of the 17 toxic tetra- through octa-chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs/CDFs) in aqueous, solid, and tissue matrices by isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS) using magnetic sector instruments. Traditionally used for dioxins analysis because of their high sensitivity, GC/HRMS instruments are expensive to maintain, require a highly specialized skill set to operate, and are being phased out by manufacturers. However, current GC/MS/MS (GC/TQ) technology provides many of the specificity and sensitivity advantages of HRMS for the analysis of regulated dioxins and furans, without the cost and complexity, and with added versatility and robustness. This application note describes a method developed in collaboration with SGS AXYS Analytical Services Ltd., SGS AXYS Method 16130, that uses the Agilent 7890B gas chromatograph coupled with an Agilent 7010B Triple Quadrupole GC/MS. Performance factors investigated included sensitivity, linearity, method detection limits (MDLs), recovery, and results compared to reference material. The GC/TQ results met the QA/QC and performance specifications described in Method 1613B for the analysis of polychlorinated dioxins and furans (PCDDs/PCDFs) in environmental matrices. Overall, the GC/TQ method produced accurate data for real-world sample matrices, offering a lower cost, more efficient alternative to GC/HRMS.

(17 toxic dioxin congeners)

Numbers of dioxin compounds isomers with different chlorine substituents

Number of

PCDF

isomers

Toxic Equivalent Factors (TEF)

Toxic PCDDs	I-TEF	WHO ₂₀₀₅ - TEF	Toxic PCDFs	I-TEF	WHO ₂₀₀₅ -TEF
2378-TetraCDD	1	1	2378-TetraCDF	0.1	0.1
12378-PentaCDD	0.5	1	12378-PentaCDF	0.05	0.03
123478-HexaCDD	0.1	0.1	23478-PentaCDF	0.5	0.3
123678-HexaCDD	0.1	0.1	123478-HexaCDF	0.1	0.1
123789-HexaCDD	0.1	0.1	123678-HexaCDF	0.1	0.1
1234678-HeptaCDD	0.01	0.01	123789-HexaCDF	0.1	0.1
12346789-OctaCDD	0.001	0.0003	234678-HexaCDF	0.1	0.1
			1234678-HeptaCDF	0.01	0.01
			1234789-HeptaCDF	0.01	0.01
			12346789-OctaCDF	0.001	0.0003

$$TEQ = \sum_{n=1}^{17} ([PCDD/F]_i ({^{ng}/_L}) \times TEF_i) ({^{ng TEQ}/_L})$$

Analytical Strategies (EPA method 1613b):

Note: EPA 1613b is performance-based method

Analytical Strategies (EPA method 1613b):

Note: EPA 1613b is performance-based method

с

System Verification

Triple Quadrupole GC/MS System Verification - Tune

Instrument Name	8890-7000D / US2106T303	MS Mo	del 7000D				
une Date & Time	7/22/2021 8:56:47 AM	Source	EI High El	EI High Efficiency			
ne Date & Time ne File instrument Actuals inization mode iource Temp. 452 Quad Temp. 453 Quad Temp. 454 Mass assignment (targ 454 mass isotope position (454 mass isotope ratio 454 mass isotope ratio 455 Checktune Resultance 455 mass assignment (targ 456 mass isotope position (456 mass isotope position (D:\MassHunter\GCMS\1\700	00\atunes.eiex_300.tu	ne.xml Modified				
Instrument Actuals		Vacuum					
Ionization mode	EI+	Rough Vac	1.03E+2	mTorr			
Source Temp.	301 °C	High Vac	8.80E-5	Torr			
MS1 Quad Temp.	150 °C	Turbo 1 Speed	100.0	96			
MS2 Quad Temp.	150 °C	Turbo 1 Power	19.4	w			
Filament Current	100.0 µA						
GC Gas Flow							
Ouench Flow	2.250 mL/min	Column 1	1.337	mL/min			
Collision Cell	1.500 mL/min	Column 2	0.000	mL/min			
MS1 Checktune Resul	Its	Value	Limit	Result			
Low mass assignment (targ	et 69.00, actual 69.00)	0.00	s = 0.20	OK			
Mid mass assignment (targ	et 264.00, actual 263.90)	0.10	<= 0.20	OK			
High mass assignment (tar	get 502.00, actual 502.00)	0.00	<= 0.20	OK			
Low mass isotope position	(target 70.00, actual 70.07)	0.07	<= 0.20	OK			
Mid mass isotope position (target 265.00, actual 264.95)	0.05	<= 0.20	OK			
High mass isotope position	(target 503.00, actual 503.00)	0.00	<= 0.20	OK			
Low mass isotope ratio	(1,15%	>= 0.5% and <= 1.6%	OK			
Mid mass isotope ratio		5,60%	>= 4.2% and <= 6.9%	OK			
High mass isotope ratio		10.67%	>= 7.9% and <= 12.3%	OK			
Ratio of mid mass to low m	1855	10.14%	>= 5.0%	OK			
Ratio of high mass to low m	nass	0.80%	>= 0.8%				
Low mass precursor ratio		0.55%	<= 3.00%	ок			
Mid mass precursor ratio		0.00%	<= 6.00%	OK			
High mass precursor ratio		1.58%	<= 12.00%	OK			
MS2 Checktune Resul	Its						
Low mass assignment (targ	et 69.00, actual 68.90)	0.10	<= 0.20	ок			
Mid mass assignment (targ	et 264.00, actual 264.00)	0.00	<= 0.20	OK			
High mass assignment (targ	get 502.00, actual 501.95)	0.05	<= 0.20	OK			
Low mass isotope position	(target 70.00, actual 70.00)	0.00	<= 0.20	OK			
Mid mass isotope position ((target 265.00, actual 265.00)	0.00	<= 0.20	OK			
High mass isotope position	(target 503.00, actual 503.00)	0.00	<= 0.20	OK			
Low mass isotope ratio		1.19%	>= 0.5% and <= 1.6%	OK			
Mid mass isotope ratio		5,73%	>= 4.2% and <= 6.9%	OK			
High mass isotope ratio		9.62%	>= 7.9% and <= 12.3%	OK			
Low mass precursor ratio		0.23%	<= 3.00%	OK			
Mid mass precursor ratio		0.13%	<= 6.00%	OK			
High mass precursor ratio		0.13%	<= 12.00%	OK			
Detector							
EMV		1010	<= 2900	OK			
Maximum gain factor		777383	>= 100	OK			

Agilent | Functioners

Page 1 of 2

7/22/2021 9:29:34 AM

Triple Quadrupole GC/MS System Verification - Tune

Instrument Name	8890-7000D / US2106T303	MS Model	7000D					
Tune Date & Time	7/22/2021 8:56:47 AM	Source	EI High E	EI High Efficiency				
Tune File	D:\MassHunter\GCMS\1\7000\atunes.eiex_300.tune.xml Modified							
Air and Water Check	Abundar	nce Relative Abundance	Limit	Result				
PFTBA (69.00)	2884306							
Water	660869	22.91%	<= 20.00%					
Oxygen	37260	1.29%	<= 2.50%	OK				
Nitrogen	138868	4.81%	<= 10.00%	OK				

* Nitrogen values are calculated from oxygen abundance

System Verification

System Verification - Tune (Detector Optimization) Portion

Instrument Name	: MH 5977		
DC Polarity	: Positive		
Filament	1		
BasePeak should be 69 or	219		OK
Position of mass 69		69.00	OK
Position of mass 219		219.00	OK
Position of mass 502		502.00	OK
Position of isotope mass	70	70.03	OK
Position of isotope mass	229	220.00	OK
Position of isotope mass	503	503.01	OK
Ratio of mass 70 to mass	69(0.5 - 1.6%)	1.09	OK
Ratio of mass 220 to mass	219(3.2 - 5.4%)	4.32	OK
Ratio of mass 503 to mass	502(7.9 - 12.3%)	10.04	OK
Ratio of 219 to 69 should	be > 40% and is	126.00	OK
Ratio of 502 to 69 should	be $>$ 2.4% and is	12.76	ОК
Mass 69 Precursor (<= 3%)		0.10	ОК
Mass 219 Precursor (<= 6%)	0.28	OK
Mass 502 Precursor (<= 12	%)	0.49	OK
597x Air and Water Check			
Mon Mar 25 11:17:31 2013		Instrument:	MH 5977
D:\MASSHUNTER\GCMS\1\5977	\atune.u		
Testing for a leak in the	e system		
Ratio of 18 to 69 (<20%)		0.52	OK
Ratio of 28 to 69 (<10%)		2.35	OK
Electron Multiplier Volta	ge	1576	ОК

Tune portion of System Verification passed.

Parameter	Value						
	Gas Chromatograph						
Model	Agilent 7890B gas chromatograph						
Column	Agilent DB-5, 60 m × 0.25 mm, 0.1 µm (p/n 122-5061)						
Column Pneumatics	Constant flow, He carrier gas						
Injector Mode	Splitless						
Injector Liner	Inlet liner, splitless, double taper, deactivated (p/n 5181-3315)						
Injection Volume	1.0 μL						
Injector Temperature	290 °C						
Flow Rate	0.93 mL/min						
Temperature Program	90 °C for 2 min, 22 °C/min to 200 °C, 1 °C/min to 215 °C, hold 10 min, 5.2 °C/min to 300 °C, hold 2.7 min						
Total Run Time	51.05 min						
Equilibration Time	0.1 min						
	Mass Spectrometer						
Model	Agilent 7010B Triple Quadrupole GC/MS						
Ionization Mode	El, 70 eV						
Acquisition Mode	MRM						
Filament Current	100 μA						
Collision Gas	N ₂ at 1.5 mL/min						
Quench Gas	He at 2.25 mL/min						
GC Interface Temperature	290 °C						
Ion Source Temperature	290 °C						
Quadrupole 1 Temperature	150 °C						
Quadrupole 2 Temperature	150 °C						

Table 6. MRM parameters and collision energy.

Segment	Analyte	Precursor ion ¹	Product ion ¹	Dwell	CE ²		Segment	Analyte	Precursor ion ¹	Product ion ¹	Dwell	CE ²
	¹⁰ C-TCDD	333.9	269.9	50	26			¹⁰ C-HxCDD	403.9	339.9	50	25
	¹⁰ C-TCDD	331.9	267.9	50	26			¹⁰ C-HxCDD	401.9	337.9	50	25
	TCDD	321.9	258.9	100	26			HxCDD	391.8	328.8	100	25
1	TCDD	319.9	256.9	100	26		4 HxCDD/HxCDF	HxCDD	389.8	326.8	100	25
Toxic TCDD/TCDF	¹³ C-TCDF	317.9	253.9	50	40			13C-HxCDF	387.9	323.9	50	40
	¹³ C-TCDF	315.9	251.9	50	40			13C-HxCDF	385.9	321.9	50	40
	TCDF	305.9	242.9	100	40			HxCDF	375.8	312.8	100	40
	TCDF	303.9	240.9	100	40			HxCDF	373.8	310.8	100	40
	¹² C-PeCDF	351.9	287.9	25	40		5 HpCDD/HpCDF	12C-HpCDD	437.8	373.8	50	24
	¹² C-PeCDF	349.9	285.9	25	40			12C-HpCDD	435.8	371.8	50	24
	PeCDF	339.9	276.9	75	40			HpCDD	425.8	362.8	100	24
	PeCDF	337.9	274.9	75	40			HpCDD	423.8	360.8	100	24
	¹⁰ C-TCDD	333.9	269.9	25	26			¹⁰ C-HpCDF	421.8	357.8	50	40
2	¹⁰ C-TCDD	331.9	267.9	25	26			¹⁰ C-HpCDF	419.8	355.8	50	40
Nontoxic TCDD/TCDF ³	TCDD	321.9	258.9	75	26			HpCDF	409.8	346.8	100	40
,	TCDD	319.9	256.9	75	26			HpCDF	407.8	344.8	100	40
	¹³ C-TCDF	317.9	253.9	25	40		6	9C-OCDD	471.8	407.8	50	24
	¹³ C-TCDF	315.9	251.9	25	40			¹⁰ C-OCDD	469.8	405.8	50	24
	TCDF	305.9	242.9	75	40			OCDD	459.7	396.7	100	24
	TCDF	303.9	240.9	75	40			OCDD	457.7	394.7	100	24
	12C-PeCDD	367.9	302.9	50	26		OCDD/OCDF	¹⁰ C-OCDF	455.8	391.8	50	40
	12C-PeCDD	365.9	301.9	50	26			¹⁰ C-OCDF	453.8	389.8	50	40
	PeCDD	355.9	292.9	100	26			OCDF	443.7	380.7	100	40
3	PeCDD	353.9	290.9	100	26			OCDF	441.7	378.7	100	40
PeCDD/PeCDF	¹⁰ C-PeCDF	351.9	287.9	50	40	[
	¹⁰ C-PeCDF	349.9	285.9	50	40							
	PeCDF	339.9	276.9	100	40							
	PeCDF	337.9	274.9	100	40							

¹ Wide resolution for precursor and product ions.

² Collision energies were adapted from Agilent Food and Feed Analyzer⁹.

^a Segment 2 was added to account for the last eluted TCDD/TCDF and first eluted PeCDD/PeCDF. The retention time of the congeners is too close to TCDD/TCDF in segment 1 and PeCDF in segment 3. The compounds in segment 2 are for investigating nontoxic CDDs/CDFs, and are optional if investigating only the toxic compounds.

Analytes	Primary MRM Transition (m/z)	Collision Energy (CE)	Secondary MRM Transition (m/z)	CE	Surrogate
1,2,3,4,6,7,8-HpCDF	407.8 → 344.8	36	409.8 -+ 346.8	36	¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF	407.8 -> 344.8	36	409.8 -+ 346.8	36	¹² C ₁₂ -1,2,3,4,7,8,9-HpCDF
OCDF	441.7 → 378.8	35	443.7 → 380.8	35	¹³ C ₁₂ -OCDD
Cleanup Standard					
²⁷ Cl ₄ -2,3,7,8-TCDD	327.9 → 262.9	33	-		¹³ C ₁₂ -1,2,3,4-TCDD
Labeled Surrogates					Recovery Calculated Using
¹³ C ₁₂ -2,3,7,8-TCDD	331.9 -+ 268.0	24	333.9 -+ 270.0	24	¹³ C ₁₂ -1,2,3,4-TCDD
¹³ C ₁₂ -1,2,3,7,8-PeCDD	367.9 → 303.9	25	365.9 -+ 301.9	25	¹³ C ₁₂ -1,2,3,4-TCDD
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	401.9 -> 337.9	25	403.9 -> 339.9	25	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	401.9 -> 337.9	25	403.9 -> 339.9	25	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	435.8 → 371.9	25	437.8 -+ 373.9	25	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -OCDD	469.8 -> 405.8	26	471.8 -+ 407.8	26	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -2,3,7,8 -TCDF	315.9 -+ 252.0	33	317.9 → 254.0	33	¹³ C ₁₂ -1,2,3,4-TCDD
¹³ C ₁₂ -1,2,3,7,8-PeCDF	351.9 -+ 287.9	35	349.9 → 285.9	35	¹³ C ₁₂ -1,2,3,4-TCDD
¹³ C ₁₂ -2,3,4,7,8-PeCDF	351.9 → 287.9	35	349.9 -> 285.9	35	¹³ C ₁₂ -1,2,3,4-TCDD
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	385.9 -+ 321.9	35	387.9 -+ 323.9	35	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	385.9 -+ 321.9	35	387.9 -+ 323.9	35	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	385.9 → 321.9	35	387.9> 323.9	35	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	385.9 → 321.9	35	387.9 -+ 323.9	35	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	419.8 -> 355.9	36	421.8 → 357.9	36	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	419.8 -> 355.9	36	421.8 → 357.9	36	¹³ C ₁₂ -1,2,3,7,8,9-HxCDD
Recovery Standards					
¹³ C ₁₂ -1,2,3,4-TCDD	331.9 -+ 268.0	24	333.9 → 270.0	24	
¹³ C ₁₂ -1,2,3,7,8,9-HxCDD	401.9 -> 337.9	25	403.9 -> 339.9	25	
CI-DPE Transitions					
Descriptor			Туре	Substance	
1	375.8 -+ 305.9	30	M+2	HxCDPE	
2	409.8 → 339.9	25	M+2	HpCDPE	
3	445.8 → 373.8	30	M+4	OCDPE	
4	479.7 → 407.8	30	M+4	NCDPE	
5	513.7 → 443.7	30	M+4	DCDPE	

	MRM Transition	ransition MRM Transition	QC L	imit"
Species Monitored	Precursor m/z (Primary/Secondary)	Product' Ion Theoretical Ratio [‡]	Lower	Upper
Cl₄CDD⁺	(M+2)/M	0.96	0.82	1.10
CI4CDF	(M+2)/M	0.96	0.82	1.10
Cl _s CDD	M/(M+2)	0.78	0.66	0.90
CI_CDF	M/(M+2)	0.78	0.66	0.90
Cl _s CDD	(M+4)/(M+2)	0.64	0.54	0.74
Cl ₆ CDF	(M+4)/(M+2)	0.64	0.54	0.74
Cl,CDD	(M+4)/(M+2)	0.80	0.68	0.92
CI,CDF	(M+4)/(M+2)	0.80	0.68	0.92
CI_CDD	(M+4)/(M+2)	0.96	0.82	1.10
CI_CDF	(M+4)/(M+2)	0.96	0.82	1.10

Figure 1A. MRM chromatograms for tetrachlorinated dibenzofurans (TCDFs), labeled TCDF ISTD, tetrachlorinated dibenzodioxins (TCDDs), and labeled TCDD ISTD.

Method Table															
Time Segment:	4# <all></all>				Compound: 💽 2	2,3,7,8-TCDD		- =	Reset	Та	ble View				
Quantifier										_					
Nar	me	TS	Tra	ansit	ion So	can		Тур	e .		Resolutio	n Calcula	tion Typ	e Resolu	tion Limit
▶ 2,3,7,8-	TCDD	1	319.9	-> 25	56.9 MRM	1	Targe	et			Valley Hei	ght/Peak	Heig_	~	25.0
			Sample								2,3,3	7,8-TCDD R	lesults		
Name	Data File	Туре	Level	Vial	Acq. Date-Time	Acq. Method F	ile	RT	Resp.	MI	Calc. Conc.	Accuracy	S/N	Resolution -	Resolution P
DX041D-CAL_/01-73	DX920444.D	Cal	CS3	7	8/22/2019 2:31 AM	TGEL DB5_DX	11	26.351	221151		9.0183	90.2	2339.21	20.4	73

Figure 3. (A) Method setup for resolution check in MassHunter Quantitative Analysis; (B) front and rear valley height/peak height resolution calculated for 2,3,7,8-TCDD and its closest eluting isomers.

Calibration and linear range

EPA 1613b CS1

Cal. Comple Nome		Name	Avg. RF	Avg. RF RSD	CS1 RF	Difference	CS1 S/N	CS1 RRT	1613b RRT criteria	Pass/Fail
Cal. Sample Name	Level	2378-TCDD	1.123	6	1.004	-11%	25	1.002	0.999-1.002	Pass
200 ppt Cal Std.	11	2378-TCDF	0.97	2.9	0.943	-3%	<u>50</u>	1.001	0.999-1.003	Pass
500 ppt Cal Std.	L2	12378-PeCDD	0.985	3.5	0.994	1%	42	1.001	0.999-1.002	Pass
1000 pptCal Std.	L3	12378-PeCDF	0.991	2.8	1.025	3%	54	1.001	0.999-1.002	Pass
4000 ppt Cal Std	14	23478-PeCDF	1.007	2.1	0.997	-1%	<u>63</u>	1.000	0.999-1.002	Pass
4000 ppt Cal Std.	L4	123478-HxCDD	0.991	4.2	0.999	1%	21	1.001	0.999-1.001	Pass
10000 ppt Cal Std.	L5	123478-HxCDF	0.924	4.4	0.921	0%	33	1.001	0.998-1.004	Pass
50000 ppt Cal Std.	L6	123678-HxCDD	0.929	3.6	0.917	-1%	25	1.000	1.000-1.019	Pass
250000 ppt Cal Std.	L7	123678-HxCDF	0.908	4.5	0.877	-3%	43	1.000	0.999-1.001	Pass
1000000 ppt Cal Std.	L8	123789-HxCDD	1.027	5.3	1.000	-3%	42	1.000	0.997-1.005	Pass
2500000 ppt Col Std	10	123789-HxCDF	0.912	5.2	0.902	-1%	38	1.000	0.999-1.001	Pass
2500000 ppt Cal Std.	19	234678-HxCDF	0.983	4.1	0.999	2%	48	1.000	0.999-1.001	Pass
		1234678-HpCDD	1.008	4	1.033	2%	<u>83</u>	1.000	0.999-1.001	Pass
		1234678-HpCDF	0.912	3.5	0.943	3%	<u>92</u>	1.000	0.999-1.001	Pass
		1234789-HpCDF	0.902	4.2	0.948	5%	<u>90</u>	1.000	0.999-1.001	Pass
		OCDD	1.056	2.4	1.040	-1%	150	1.000	0.999-1.001	Pass
		OCDF	0.913	3.5	0.940	3%	148	1.000	0.999-1.008	Pass

$$\mathbf{RF} = \frac{A_{2,3,7,8-\text{TCDD},Std}}{A_{13C,Std}} \times \frac{M_{13C,Std} (ng)}{M_{2,3,7,8-\text{TCDD},Std} (ng)}$$

Agilent

Verification Standards recoveries

	Chemstatio	Theoretical			
Comp. Name	n Amt (ng)	Amt (ng)	% Recovery	1613b criteria	Pass/Fail
2378-TCDF	1.815	2	91%	84-120%	Pass
2378-TCDD	1.833	2	92%	78-129%	Pass
12378-PCDF	4.790	5	96%	82-120%	Pass
23478-PCDF	4.705	5	94%	82-122%	Pass
12378-PCDD	4.742	5	95%	78-130%	Pass
123478-HxCDF	4.642	5	93%	90-112%	Pass
123678-HxCDF	4.629	5	93%	88-114%	Pass
234678-HxCDF	4.600	5	92%	88-114%	Pass
123789-HxCDF	4.701	5	94%	90-112%	Pass
123478-HxCDD	4.342	5	87%	78-128%	Pass
123678-HxCDD	4.385	5	88%	78-128%	Pass
123789-HxCDD	4.422	5	88%	82-122%	Pass
1234678-HpCDF	4.823	5	96%	90-110%	Pass
1234789-HpCDF	5.097	5	102%	86-116%	Pass
1234678-HpCDD	4.840	5	97%	86-116%	Pass
OCDF	9.221	10	92%	63-159%	Pass
OCDD	9.175	10	92%	79-126%	Pass

Low working range and sensitivity

50 femtogram of 2378-TCDD on the column

- > 2.5 signal to noise ratio
- The relative ion intensities is within 15% difference to the calibration average.

🔆 Agilent

Batch Name	E:\Pace 1613\03	292018\Quar	ntResults\05082	2018-4.batch.t	bin					
Method File	E:\Pace 1613\03	292018\1613	proccessing.m	1						
Daily CC	E:\Pace 1613\03	2920180329	18_08.D							
Level name	Injection Time	Calib	ration Files							
0.5	3/29/2018 3:06:1	1 PM E:\Pa	ce 1613\03292	018\032918_	03.D					
2	3/29/2018 3:55:4	3/29/2018 3:55:41 PM E:\Pace 1613\03292018\032918_04.D								
10	3/29/2018 4:45:12	/29/2018 4:45:12 PM E:\Pace 1613\03292018\032918_05.D								
40	3/29/2018 5:34:3	29/2018 5:34:38 PM E:\Pace 1613\03292018\032918_06.D								
200	3/29/2018 6:24:0	8 PM E:\Pa	ce 1613\03292	018\032918_	07.D					
CC	3/29/2018 7:13:3	2 PM E:\Pa	ce 1613\03292	018\032918_	08.D <===					
STD Compound		Avg Resp	Mid Resp	CC Resp	Агеа%	RT		Diff	A/M	
1 I 13C 2,3,7,8 T	CDD	1200841	1128653	1007947	83.94	28.361		0.001	A	
2 I 13C 2,3,7,8	TCDF	1855290	1720447	1752220	94.44	26.922		0.013	A	
4 I 13C- 2,3,4,7,	8 PCDF	1626873	1511377	1342970	82.55	35.182		0.000	A	
3 I 13C-1,2,3,6,8	PCDD	1053816	994703	909185	86.28	35.451		0.010	A	
5 I 13C- 1,2,3,4,	7,8 HxCDD	803043	726069	540764	67.34	37.903		0.010	A	
4 I 13C 1,2,3,7,8	PCDF	1465718	1494749	1310795	89.43	34.269		0.010	A	
6 13C- 1,2,3,4,7,	8 HxCDF	946111	849834	261104	27.60	37.756		0.020	Α	
6 I13C 1.2.3.6.7.	8 HxCDF	992349	899279	788085	79.42	37.380		0.010	A	
6 I 13C 1,2,3,7,8	,9 HxCDF	992349	899279	788085	79.42	37.380		0.010	A	
6 13C 2,3,4,6,7,8	3 HxCDF	891790	814024	586423	65.76	38.273		0.010	A	
5 I 13C- 1,2,3,4,	6,7,8 HpCDD	524813	475001	375918	71.63	39.939		0.020	A	
6 I 13C- 1,2,3,4,	6,7,8 HpCDF	591050	539042	354137	59.92	40.299		0.010	A	
5 I 13C- 1,2,3,6,	7,8 HxCDD	803043	726069	540764	67.34	37.903		0.010	Α	
R 13C- 1,2,3,7,8	9 HxCDD	753263	703170	557521	74.01	38.065		0.010	A	
7 I 13C-OCDD		698557	647464	389167	55.71	42.067		0.020	A	
R 13C 1,2,3,4 TC	DD	1200841	1128653	1007947	83.94	28.361		0.001	A	
6 I 13C- 1,2,3,4,	7,8,9 HpCDF	591050	539042	354137	59.92	40.299		0.010	A	
Target Compoun	d	AvgRF/R	2 CC RF	Exp. Conc	Calc. Conc	%Dev	Area%	Curve Fl	t	
1 I 13C 2,3,7,8 T	CDD			ISTD						
W2 1,2,8,9 TCDI		1.2589	1.2335	10.10	9.90	2.02	19.92	Avg RF		
T 2,3,7,8 TCDD		1.1474	1.2327	10.00	10.74	-7.44	19.75	Avg RF		
W2 1,3,6,8 TCDI)	1.1666	1.2230	10.10	10.59	-4.83	19.75	Avg RF		
2 I 13C 2,3,7,8	TCDF			ISTD						
W1 1,2,8,9 TCDF	-	1.3158	1.1754	10.10	9.02	10.67	20.69	Avg RF		
T 2,3,7,8 TCDF		1.2287	1.1870	10.00	9.66	3.40	20.60	Avg RF		
W1 1,3,6,8 TCDF	:	1.2575	1.1754	10.10	9.44	6.53	20.60	Avg RF		
4 I 13C- 2,3,4,7,	8 PCDF			ISTD						
T 2,3,4,7,8 PCDF		5.9087	5.5221	10.00	9.35	6.54	17.01	Avg RF		
3 I 13C-1,2,3,6,8	PCDD			ISTD						
W4 1,2,3,8,,9 PC	DD	5.8731	5.3763	10.10	9.25	8.46	19.03	Avg RF		
T 1,2,3,7,8 PCDE)	5.5231	5.4312	10.00	9.83	1.66	19.03	Avg RF		
W4 1,2,4,7,9 PCI	DD	5.6973	5.3766	10.10	9.53	5.63	19.03	Avg RF		
51130-1234	7,8 HxCDD			ISTD						
51150-1,2,5,4,	IxCDD	4.6378	4.9515	10.10	10.78	-6.76	16.35	Avg RF		
W6 1,2,3,7,8,9 H			4 6004	10.00	9.74	2.63	14.60	Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hx	CDD	4.8254	4.6984							
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hx0 T 1,2,3,7,8,9 Hx0		4.8254 4.7834	5.2586	10.00	10.99	-9.94	16.99	Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxt T 1,2,3,7,8,9 Hxt T 1,2,3,7,8,9 Hxt	CDD CDD IxCDD	4.8254 4.7834 4.7835	4.6984 5.2586 5.2126	10.00 10.10	10.99 11.01	-9.94 -8.97	16.99 17.08	Avg RF Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxt T 1,2,3,7,8,9 Hxt T 1,2,3,7,8,9 Hxt W6 1,2,4,6,7,9 H 4 I 13C 1,2,3,7,8	CDD CDD IxCDD IxCDD	4.8254 4.7834 4.7835	4.6984 5.2586 5.2126	10.00 10.10 ISTD	10.99 11.01	-9.94 -8.97	16.99 17.08	Avg RF Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxt T 1,2,3,7,8,9 Hxt W6 1,2,4,6,7,9 H 4 I 13C 1,2,3,7,8 W3 1,3,4,6,8 PC	CDD CDD IxCDD I PCDF CDF	4.8254 4.7834 4.7835 5.1718	4.6984 5.2586 5.2126 5.4831	10.00 10.10 ISTD 10.10	10.99 11.01 10.71	-9.94 -8.97 -6.02	16.99 17.08 22.06	Avg RF Avg RF Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxt T 1,2,3,7,8,9 Hxt W6 1,2,4,6,7,9 Hxt W6 1,2,4,6,7,9 H 4 I 13C 1,2,3,7,8 W3 1,3,4,6,8 PCDF T 1,2,3,7,8 PCDF	CDD CDD IxCDD IxCDD IxCDF DF I F	4.8254 4.7834 4.7835 5.1718 5.2581	4.6984 5.2586 5.2126 5.4831 5.5347	10.00 10.10 ISTD 10.10 10.00	10.99 11.01 10.71 10.53	-9.94 -8.97 -6.02 -5.26	16.99 17.08 22.06 22.04	Avg RF Avg RF Avg RF Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxt T 1,2,3,7,8,9 Hxt W6 1,2,4,6,7,9 H 4 I 13C 1,2,3,7,8 W3 1,3,4,6,8 PC T 1,2,3,7,8 PCDF W3 1,2,3,8,9 PC	CDD CDD kxCDD k PCDF DF c CDF	4.8254 4.7834 4.7835 5.1718 5.2581 6.5307	4.6984 5.2586 5.2126 5.4831 5.5347 5.6033	10.00 10.10 ISTD 10.10 10.00 10.10	10.99 11.01 10.71 10.53 8.67	-9.94 -8.97 -6.02 -5.26 14.20	16.99 17.08 22.06 22.04 17.01	Avg RF Avg RF Avg RF Avg RF Avg RF		
W6 1,2,3,7,8,9 H T 1,2,3,4,7,8 Hxi T 1,2,3,7,8,9 Hxi W6 1,2,4,6,7,9 H 4 I 13C 1,2,3,7,8 W3 1,3,4,6,8 PC F 1,2,3,7,8 PCDF W3 1,2,3,8,9 PC 5 13C- 1,2,3,4,7,	CDD CDD kxCDD & PCDF DF : : : : : : : : : : : : : : : : :	4.8254 4.7834 4.7835 5.1718 5.2581 6.5307	4.6984 5.2586 5.2126 5.4831 5.5347 5.6033	10.00 10.10 ISTD 10.10 10.00 10.10 ISTD	10.99 11.01 10.71 10.53 8.67	-9.94 -8.97 -6.02 -5.26 14.20	16.99 17.08 22.06 22.04 17.01	Avg RF Avg RF Avg RF Avg RF Avg RF		
W6 1,2,3,7,8,9 H W6 1,2,3,4,7,8 Hxf F 1,2,3,4,7,8 Hxf W6 1,2,4,6,7,9 H H I 13C 1,2,3,7,8 W3 1,3,4,6,8 PC F 1,2,3,7,8 PCDF W3 1,2,3,8,9 PC 5 13C- 1,2,3,4,7,8 Hxf	CDD CDD kxCDD # PCDF DF = : : : : : : : : : : : : : : : : : :	4.8254 4.7834 4.7835 5.1718 5.2581 6.5307 	4.05984 5.2586 5.2126 5.4831 5.5347 5.6033 6.2640	10.00 10.10 10.10 10.00 10.10 ISTD 10.00	10.99 11.01 10.71 10.53 8.67 12.14	-9.94 -8.97 -6.02 -5.26 14.20 -21.45	16.99 17.08 22.06 22.04 17.01 7.41	Avg RF Avg RF Avg RF Avg RF Avg RF		

	IST	D and Su	rrogate Reg	coverv% Repo	rt			
Batch Name	E:\Pace 1613\0329201	8\OuantResults	\05082018-4.bat	ch.bin				
Data File	E:\Pace 1613\0329201	8\032918 03.D)					
Sample Name	CS1	_						
Level name		Calibration Fi	es					
0.5	3/29/2018 3:06:11 PM	E:\Pace 1613	\03292018\0329	18 03.D				
2	3/29/2018 3:55:41 PM	E:\Pace 1613	\03292018\0329	18 04.D				
10	3/29/2018 4:45:12 PM	E:\Pace 1613	\03292018\0329	18 05.D				
40	3/29/2018 5:34:38 PM	E:\Pace 1613\03292018\032918 06.D						
200	3/29/2018 6:24:08 PM	E:\Pace 1613\03292018\032918_07.D						
CC	3/29/2018 7:13:32 PM	E:\Pace 1613	\03292018\0329	18_08.D <====				
ISTD Recovery9	6							
Compound Nam	6	Avg Resp	CC Resp	Resp in Sample	Area% Avg			
2 I 13C 2.3.7.8	TCDF	1855290	1752220	1631619	87.94%			
1 I 13C 2,3,7,8	TCDD	1200841	1007947	1026550	85.49%			
R 13C 1.2.3.4 T	CDD	1200841	1007947	1026550	85.49%			
4 I 13C 1.2.3.7.	8 PCDF	1465718	1310795	1344326	91.72%			
4 I 13C- 2.3.4.7	8 PCDF	1626873	1342970	1495444	91.92%			
3 I 13C-1.2.3.6.	8 PCDD	1053816	909185	967401	91.80%			
6 I13C 1.2.3.6.7	7.8 HxCDF	992349	788085	898442	90.54%			
6 I 13C 1.2.3.7.	8.9 HxCDF	992349	788085	898442	90.54%			
6 13C- 1.2.3.4.7	8 HxCDF	946111	261104	841051	88.90%			
5 I 13C- 1.2.3.4	7.8 HxCDD	803043	540764	727809	90.63%			
5 I 13C- 1.2.3.6	7.8 HxCDD	803043	540764	727809	90.63%			
R 13C- 1.2.3.7.8	3.9 HxCDD	753263	557521	645606	85.71%			
6 13C 2,3,4,6,7,	8 HxCDF	891790	87.74%					
5 I 13C- 1.2.3.4	.6.7.8 HpCDD	524813	375918	457367	87.15%			
6 I 13C- 1.2.3.4	.6.7.8 HpCDF	591050	354137	514475	87.04%			
6 I 13C- 1,2,3,4	7,8,9 HpCDF	591050	354137	514475	87.04%			
7 I 13C-OCDD		698557	389167	597064	85.47%			
Surrogate Recov	very%							
Compound Nam	e	Avg Resp	CC Resp	Resp In Sample	Area%_Avg			
S 13C 2,3,7,8 TO	CDF	1861034	1756952	1625727	87.36%			
S 13C 2,3,7,8 T	CDD	1208120	1006233	1049221	86.85%			
S CL37 TCDD		3710290	0	38874	1.05%			
S 13C 1,2,3,7,8	PCDF	1466601	1311308	1345672	91.75%			
S 13C- 2,3,4,7,8	3 PCDF	1626494	1342928	1496542	92.01%			
S 13C-PCDD		1053753	909170	967340	91.80%			
S 13C 1.2.3.6.7.	.8 HxCDF	992349	788085	898442	90.54%			
S 13C- 1,2,3,4,7	7,8 HxCDF	946111	261104	841051	88.90%			
S 13C 1,2,3,7,8,	9 HxCDF	946111	261104	841051	88.90%			
S 13C- 1,2,3,4,7	7,8 HxCDD	802999	541024	720445	89.72%			
S 13C- 1,2,3,6,7	7,8 HxCDD	802999	541024	720445	89.72%			
S 13C 2,3,4,6,7,	8 HxCDF	891873	584463	784236	87.93%			
S 13C- 1,2,3,4.6	5,7,8 HpCDF	680423	493330	598076	87.90%			
S 13C- 1,2,3,4,6	5,7,8 HpCDD	523734	375085	455413	86.96%			
S 13C- 1,2,3,4,7	7,8,9 HpCDF	591050	354137	514475	87.04%			
S 13C-OCDD		698583	389286	597219	85.49%			

	Quantitation	Results Report	(Not Rev	viewed)		0
Compound	RT	QIon	Resp.	Conc.	Units	Dev(Min)
Spiked Amount: 100.000	Range: 50	.0 - 150.0%		Recovery =	101.99%	
S 13C- 1,2,3,4,7,8,9 HpCDF	40.309	419.8 -> 355.8	502627	99.9654	ng/ml	0.020
Spiked Amount: 100.000	Range: 50	.0 - 150.0%		Recovery =	99.97%	
S 13C-OCDD	42.067	469.8 -> 405.8	601784	101.2227	ng/ml	0.020
Spiked Amount: 100.000	Range: 50	.0 - 150.0%		Recovery =	101.22%	
Target Compounds						QValue
W1 1,2,8,9 TCDF	21.207	303.9 -> 240.9	274473	11.9770	ng/ml	98
W2 1,2,8,9 TCDD	23.243	319.9 -> 256.9	160866	11.4129	ng/ml	100
T 2,3,7,8 TCDF	27.006	303.9 -> 240.9	197215	9.2156	ng/ml	100
T 2,3,7,8 TCDD	28.436	319.9 -> 256.9	111063	8.6455	ng/ml	82
W2 1,3,6,8 TCDD	30.274	319.9 -> 256.9	120426	9.2194	ng/ml	99
W3 1,3,4,6,8 PCDF	30.483	339.9 -> 276.9	729064	9.9419	ng/ml	99
W1 1,3,6,8 TCDF	30.602	303.9 -> 240.9	235594	10.7572	ng/ml	99
W4 1,2,3,8,,9 PCDD	33.281	355.9 -> 292.9	754312	12.2040	ng/ml	100
T 1,2,3,7,8 PCDF	34.301	339.9 -> 276.9	749416	10.0518	ng/ml	98
T 2,3,4,7,8 PCDF	35.214	339.9 -> 276.9	968414	10.0022	ng/ml	98
T 1,2,3,7,8 PCDD	35.473	355.9 -> 292.9	574486	9.8836	ng/ml	99
W4 1,2,4,7,9 PCDD	35.778	355.9 -> 292.9	705544	11.7673	ng/ml	97
W3 1,2,3,8,9 PCDF	35.965	339.9 -> 276.9	984104	10.6274	ng/ml	99
W6 1,2,3,7,8,9 HxCDD	36.891	389.8 -> 326.8	342825	10.9340	ng/ml	100
T 1,2,3,6,7,8 HxCDF	37.322	373.8 -> 310.8	426620	10.3811	ng/ml	99
W5 1,2,3,4,6,8 HxCDF	37.322	373.8 -> 310.8	426593	10.5183	ng/ml	98
T 1,2,3,7,8,9 HxCDF	37.393	373.8 -> 310.8	413457	10.0337	ng/ml	100
T 1,2,3,4,7,8 HxCDF	37.758	373.8 -> 310.8	440085	10.0977	ng/ml	100
T 1,2,3,4,7,8 HxCDD	37.916	389.8 -> 326.8	326338	10.0037	ng/ml	98
T 1,2,3,6,7,8 HxCDD	37.916	389.8 -> 326.8	326338	10.0037	ng/ml	98
T 1,2,3,7,8,9 HxCDD	38.078	389.8 -> 326.8	324729	10.0418	ng/ml	99
W6 1,2,4,6,7,9 HxCDD	38.078	389.8 -> 326.8	324924	10.0475	ng/ml	99
T 2,3,4,6,7,8 HxCDF	38.286	373.8 -> 310.8	361005	9.7968	ng/ml	100
W5 1,2,3,4,8,9 HxCDF	38.286	373.8 -> 310.8	360794	9.5603	ng/ml	100
T 1,2,3,4,7,8,9 HpCDF	39.226	407.8 -> 344.8	319863	10.5757	ng/ml	99
W7 1,2,3,4,6,7,8 HpCDF	39.226	407.8 -> 344.8	319801	10.5726	ng/ml	99
W8 1,2,3,4,6,7,9 HpCDD	39.424	423.8 -> 360.8	282634	10.7411	ng/ml	100
T 1,2,3,4,6,7,8 HpCDD	39.941	423.8 -> 360.8	262512	10.2756	ng/ml	100
W8 1,2,3,4,6,7,8 HpCDD	39.941	423.8 -> 360.8	262732	10.2663	ng/ml	100
T 1,2,3,4,6,7,8 HpCDF	40.312	407.8 -> 344.8	274884	10.1779	ng/ml	99
W7 1,2,3,4,7,8,9 HpCDF	40.312	407.8 -> 344.8	275806	10.2046	ng/ml	99
T OCDD	42.080	457.7 -> 394.7	281234	9.7196	ng/ml	100
T OCDF	42.237	441.7 -> 378.7	304751	9.7216	ng/ml	98
	16.637	110 - 5100	301731	3.7210	19/11	

(#) = Qualifier Out of Range; (m) = Manual Integration; (+) = Area Summed; (*) = Surrogate Percent Recovery Out of Range; (d): Zeroed Peak

The 7010B triple quadrupole GC/MS is equipped with a high-efficiency El source that produces up to 20 times more ions and maximizes ion transfer into the quadrupole mass analyzer, allowing significantly more sensitivity while still maintaining robustness.

Linearity, MDLs, total PCDD/PCDF

The GC/TQ system showed good linearity over the Method 16138 calibration range and met Method 1613B specifications. Linearity values expressed in terms of % RSDs of response factors for the target analytes across the calibration range were less than 20% and ranged from 2.2 to 15.4%. The 20% RSD limit does not apply to the labeled compounds, which are quantified by internal standard, not by isotope dilution. The %RSD of the PCDD/PCDF response factors for the five sets (days) of initial calibrations for the GC/TQ system are shown in Table 4. The results underscored the excellent dynamic range of the 7010B triple guadrupole GC/MS system.

The GC/TQ MDL results for the aqueous (1 L), solid (10 g), and tissue (10 g) samples are shown in Table 5. The results obtained using the 70108 triple quadrupole GC/MS system far surpassed Method 16138 MRLs.

Total PCDD and PCDF concentrations from the real-world sample extracts were reported by MassHunter software for each level of chlorination by summing the concentration of the individual peaks meeting quantification criteria (peak shape, S/N, and product ion ratio) in the appropriate retention time window. Figure 4 shows the comparison of the total PCDD and PCDF concentrations determined using GC/HRMS and GC/TQ. The results for the two technologies were comparable.

Table 4. %RSDs of the PCDD/PCDF response factors for the five days of initial calibrations.

Date Acquired	19-AUG-19	21-AUG-19	06-JAN-20	07-JAN-20	08-JAN-20
Data File ID	DX9Z0415-A1	DX9Z0444-A1	DX9Z0830-A1	DX9Z0837-A1	DX9Z0853-A1
Name	RRF %RSD				
2,3,7,8-TCDF	4.0	3.0	4.4	2.7	2.4
1,2,3,7,8-PeCDF	3.7	2.8	3.4	2.9	2.7
2,3,4,7,8-PeCDF	3.8	3.5	4.1	3.9	4.3
1,2,3,4,7,8-HxCDF	3.1	4.5	4.4	2.3	5.6
1,2,3,6,7,8-HxCDF	3.0	3.5	5.3	3.6	8.1
2,3,4,6,7,8-HxCDF	3.0	3.9	6.2	4.5	1.3
1,2,3,7,8,9-HxCDF	4.6	5.4	6.7	2.7	6.0
1,2,3,4,6,7,8-HpCDF	3.2	4.3	3.7	4.8	4.3
1,2,3,4,7,8,9-HpCDF	4.6	4.7	4.6	5.8	4.0
OCDF	7.1	10.2	9.0	7.0	6.3
2,3,7,8-TCDD	2.9	4.8	6.3	5.6	7.3
1,2,3,7,8-PeCDD	4.6	4.6	2.2	2.3	3.9
1,2,3,4,7,8-HxCDD	4.3	4.0	2.3	2.3	3.1
1,2,3,6,7,8-HxCDD	5.4	5.3	5.2	2.6	5.3
1,2,3,7,8,9-HxCDD	5.3	3.4	6.8	3.6	4.7
1,2,3,4,6,7,8-HpCDD	2.6	3.9	8.4	4.3	4.9
0000	3.6	3.6	5.7	4.5	4.8

		Aqueous			Solids		Tissues		
	Total Conc. (pg/L)	Mean % Recovery	RSD (%)	Total Conc. (pg/L)	Mean % Recovery	RSD (%)	Total Conc. (pg/g)	Mean % Recovery	RSD (%)
2,3,7,8-TCDD	200	99	2	20	102	2	20	102	1
1,2,3,7,8-PECDD	1,000	98	2	100	99	2	100	100	1
1,2,3,4,7,8-HXCDD	1,000	97	2	100	99	1	100	99	1
1,2,3,6,7,8-HXCDD	1,000	96	3	100	98	3	100	98	2
1,2,3,7,8,9-HXCDD	1,000	103	4	100	109	3	100	118	12
1,2,3,4,6,7,8-HPCDD	1,000	98	2	100	100	2	100	98	1
OCDD	2,000	98	2	200	100	2	200	99	1
2,3,7,8-TCDF	200	99	2	20	101	2	20	101	1
1,2,3,7,8-PECDF	1,000	97	2	100	100	2	100	100	1
2,3,4,7,8-PECDF	1,000	97	2	100	99	2	100	99	1
1,2,3,4,7,8-HXCDF	1,000	95	2	100	98	1	100	97	1
1,2,3,6,7,8-HXCDF	1,000	98	4	100	102	2	100	98	2
1,2,3,7,8,9-HXCDF	1,000	102	3	100	103	2	100	102	1
2,3,4,6,7,8-HXCDF	1,000	97	3	100	99	2	100	98	1
1,2,3,4,6,7,8-HPCDF	1,000	107	3	100	108	2	100	109	6
1,2,3,4,7,8,9-HPCDF	1,000	98	3	100	100	2	100	100	1
OCDF	2,000	92	2	200	97	2	200	94	3

Table 6. Fortified concentration, mean percent recovery (n = 4), and percent RSD for spiked clean matrix.

Table 5. GC/TQ MDL results with comparison to Met

	Aqueous	Solid	Tissue
Compound	MDL and (MRL) in pg/L	MDL and (MRL) in pg/g	MDL and (MRL) in pg/g
2,3,7,8-TCDD	1.1 (10)	0.029 (1)	0.057 (0.5)
1,2,3,7,8-PeCDD	1.39 (50)	0.037 (5)	0.051 (2.5)
1,2,3,4,7,8-HxCDD	1.05 (50)	0.042 (5)	0.061 (2.5)
1,2,3,6,7,8-HxCDD	1.08 (50)	0.045 (5)	0.033 (2.5)
1,2,3,7,8,9-HxCDD	1.78 (50)	0.064 (5)	0.067 (2.5)
1,2,3,4,6,7,8-HpCDD	1.19 (50)	0.070 (5)	0.032 (2.5)
OCDD	9.4 (100)	0.311 (10)	0.085 (5)
2,3,7,8-TCDF	0.56 (10)	0.60 (1)	0.056 (0.5)
1,2,3,7,8-PeCDF	1.0 (50)	0.037 (5)	0.046 (2.5)
2,3,4,7,8-PeCDF	1.25 (50)	0.039 (5)	0.033 (2.5)
1,2,3,4,7,8-HxCDF	0.89 (50)	0.032 (5)	0.029 (2.5)
1,2,3,6,7,8-HxCDF	1.11 (50)	0.031 (5)	0.046 (2.5)
1,2,3,7,8,9-HxCDF	1.22 (50)	0.048 (5)	0.084 (2.5)
2,3,4,6,7,8-HxCDF	1.26 (50)	0.026 (5)	0.034 (2.5)
1,2,3,4,6,7,8-HpCDF	0.92 (50)	0.255 (5)	0.064 (2.5)
1,2,3,4,7,8,9-HpCDF	1.35 (50)	0.028 (5)	0.043 (2.5)
OCDF	2.81 (100)	0.365 (10)	0.113 (5)

Recoveries

Three sets of spiked clean matrix one each of aqueous (1 L), solids (10 g) and tissues (10 g) were run and the mean percent recovery (n = 4) and percent RSD calculated (Figure 6). Results were compared and determined to conform to Method 1613B IPR specifications.

Proficiency, SRM, and CRM results

The evaluation report from Sigma-Aldrich RTC, Inc. concluded that both GC/HRMS and GC/TQ results obtained from the proficiency tests were acceptable and met study criteria and with an overall score of 100%. These results indicate the accuracy of PCDD/PCDF data from the 7010B Triple Quadrupole GC/MS analysis of the environmental matrices. The results of the GC/TQ analysis of the solids SRM (NIST 1944) and tissue CRM (EDF 2525) also demonstrated the accuracy of the GC/TQ method.

- 22

Spiked Water Sample (GC/HRMS vs GC/MS/MS)

Similar concentration detected in water sample on both systems!

How did we get here from there

How did we get here from there

Three years of a combined effort has gone into this process. I would like to thank the following

SGS AXYS Sidney B.C Canada

Pace Analytical Minneapolis Minnesota, U.S.A

The Dow Chemical Company, Michigan, USA

U.S EPA Region 4 Athens Georgia U.S.A.

U.S EPA Office Of Water Washington D.C U.S.A.

Without their help and support we would not have been able to establish the protocol for meeting method 16130 by GC/MS/MS

How did we get here from there

Dale R. Walker GC/MS/MS Application Scientist

Fred Feyerherm GC/MS/MS Application Scientist

Anastasia Andrianova GCMS Application Scientist

Harry Prest GC/MS R&D Chemist

Diana Wong GC/MS Application Scientist

Tarun Anumol, Ph.D. Director, Global Environment & Food Markets

Craig Marven Director, Global Environment & Food Markets

SGS AXYS Method 16130

Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated

Dibenzo-p-Dioxins and Dibenzofurans (CDDs/CDFs)

Using Waters and Agilent Gas Chromatography Mass Spectrometry

(GC-MS/MS)

Revision 1.0

1.0 Scope and Application

- 1.1 This method is for determination of tetra- through octa-chlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) in water, soil, sediment, sludge, tissue, and other sample matrices by gas chromatography coupled with a tandem quadrupole mass spectrometry system (GC-MS/MS). The method is for use in EPA's data gathering and monitoring programs associated with the Clean Water Act, the Resource Conservation and Recovery Act, the Comprehensive Environmental Response, Compensation and Liability Act, and the Safe Drinking Water Act. The method is based on a compilation of EPA, industry, commercial laboratory, and academic methods (References 1-7).
- 1.2 The seventeen 2,3,7,8-substituted CDDs/CDFs listed in Table 1 may be determined by this method. Specifications are also provided for separate determination of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachloro-dibenzofuran (2,3,7,8-TCDF).
- 1.3 The detection limits and quantitation levels in this method are usually dependent on the level of interferences rather than instrumental limitations. The minimum levels (MLs) in Table 2 are the levels at which the CDDs/CDFs can be determined with no interferences present. The Method Detection Limit (MDL) for 2,3,7,8-TCDD has been determined as 0.9 pg/L (parts-per-quadrillion) using this method and the Waters APGC-MS/MS system and as 1.1 pg/L using this method and the Agilent GC-MS/MS system.
- 1.4 The GC-MS/MS portions of this method are for use only by analysts experienced with tandem quadrupole mass spectrometry systems or under the close supervision of such qualified persons. Each laboratory that uses this method must demonstrate the ability to generate acceptable results using the procedure in Section 9.2.
- 1.5 This method is "performance-based". The analyst is permitted to modify the method to overcome interferences or lower the cost of measurements, provided that all performance criteria in this method are met. The requirements for establishing method equivalency are given in Section 9.1.2.
- 1.6 Any modification of this method, beyond those expressly permitted, shall be considered a major modification subject to application and approval of alternate test procedures under 40 CFR 136.4 and 136.5.

Revised August 2020

----- Agilent

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF WATER

Coreen Hamilton, Ph.D. Senior Scientific Specialist SGS AXYS Analytical Services, Ltd. 2045 Mills Road West Sidney, BC V&L 5X2 Canada

SUBJECT: Review of SGS AXYS Method 16130, Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs/CDFs) Using Waters and Agilent Gas Chromatography Mass Spectrometry (GC-MS/MS) (ATP Case No. N18-0003)

DATE: September 17, 2020

I have reviewed SGS AXYS Method 16130 (ATP Case No. N18-0003), "Determination of 2,3,7,8-Substituted Tetra- through Octa-Chlorinated Dibenzo-*p*-Dioxins and Dibenzofurans (CDDs/CDFs) Using Waters and Agilent Gas Chromatography Mass Spectrometry (GC-MS/MS)," and the supporting validation data in ATP Case No. N18-0003. I determined that this method meets all requirements for measurement of 2,3,7,8-substituted tetra-through octa-chlorinated dibenzo-*p*-dioxins and dibenzofurans (PCDDs/PCDFs) in wastewater. That is, the performance of this method is substantially similar to methods listed at 40 CFR Part 136 for measurement of PCDDs/PCDFs in wastewater.

Based on the attached justification and the performance of SGS AXYS Method 16130, I will recommend that this method be included in future regulatory actions in which EPA adds to the list of approved methods at 40 CFR Part 136. However, this ATP review does not replace the normal notice-and-comment rulemaking process. In the interim, a user may, on a facility-by-facility basis, seek approval from their regional authority for use of this method in measuring PCDDs/PCDFs in wastewater in Clean Water Act (CWA) programs.

If I can be of any additional assistance on this matter or others, please contact me at walker.lemuel@epa.gov.

Sincerely.

Lemuel Walker CWA ATP Coordinator Technology and Analytical Support Branch Engineering and Analysis Division Office of Science and Technology Office of Water

cc: Tarun Anumol – Agilent Technologies Frank Dorman – Waters Corporation Quality Assurance Managers (all Regions) ATP Coordinators (all Regions)

Questions ?

